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Abstract. The two-dimensional planar rotator andXY ferromagnetic models for finite lattice 
sizes (triangular network), with free and periodic boundary conditions, have been studied 
using Monte Carlo simulations. Thermodynamic quantities, suitable for comparison with 
experimental data, have been obtained. Heat capacity data are almost insensitive to the 
lattice size and to the type of boundary conditions, whereas susceptibility data are sensitive 
to both the lattice size and the boundary conditions. For the Kosterlitz-Thouless phase 
transition non-universal critical parameters are inferred. They depend on the lattice, the 
model and the boundary conditions. It is conjectured that the main differences between free 
and periodic boundary conditions are caused by the influence of the free surface on vortex 
energetics. 

1. Introduction 

Since Kosterlitz-Thouless (KT) (Kosterlitz and Thouless 1973, Kosterlitz 1974) 
explained the contradictory theoretical results for two dimensional ( 2 ~ )  magnetic sys- 
tems, in which the susceptibility (x) has a divergence with zero magnetisation ( M ) ,  a 
great effort on both theoretical and experimental aspects has been made. 2~ planar 
magnetic models are examples of systems with linear and non-linear excitations, 
extended spin waves and localised vortices. At low temperatures spin waves dominate 
and long-range order is destroyed ( M  = 0), but short-range order (SRO) still exists and 
it is characterised by a power-law decrease of the correlation function, which yields 
infinite susceptibility. The transition to a disordered phase is caused by non-linear and 
localised vortex-like excitations, which at low temperatures appear in bounded couples 
and at higher temperatures dissociate thereby destroying the SRO. 

Conventional perturbative methods enable an accurate spin-waves treatment to be 
undertaken. However, due to their intrinsic non-linear nature, the vortices cannot be 
handled in the same way and non-perturbative methods, such as renormalisation group 
(RG) (Jose et a1 1977) or Monte Carlo (MC) simulations (Tobochnik and Chester 1979) 
have proved to be powerful tools in calculating the effects of vortices. In particular, a 
cusp in the specific heat, at temperatures for which x is finite, has been detected using 
MC simulations. The correlation function, the vortice density and other macroscopic 
quantities have also been estimated. Most of the MC calculations have been carried out 
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for the square lattice planar rotator (PR) and X Y  models and, if bulk properties are to 
be simulated, periodic boundary conditions (PBC) must be included (Tobochnik and 
Chester 1979, Landau and Binder 1981, Gerling and Landau 1984). However, as far as 
we know, no such MC studies have been made on these models for finite-size lattices, in 
which neither the thermodynamic limit nor PBC may be applied. Free boundary con- 
ditions (FBC) imposed on finite clusters could drastically change the vortice-creation 
mechanism and could also modify the non-universal parameters of the phase transition. 
Thus, for half-infinite systems it has been shown that, because of the appearance of 
image vortices, single vortices pass over the boundary (Holz and Gong 1987). 

From an analytical point of view, finite-size effects have been studied by Szeto and 
Dresselhaus (1985), who used RG methods to interpolate the low-temperature spin- 
wave and the high-temperature regimes. Their RG method, although correct, is unable 
to take into account two main features: (1) spin-wave-vortex interaction, since the 
RG method uses Villain’s approximation, which is known to fail in the quantitative 
description of the KT phase transition (Janke and Kleinert 1986); and (2) non-periodic 
boundary conditions, because the RG method uses the spin-wave approximation, in 
which PBC are required, since the Brillouin zone must be well defined. 

On the experimental side, many systems (not only of a magnetic nature) have 
confirmed some of the theoretical predictions. Superfluidity in two dimensions, 2~ 
melting, and the adsorption of gases onto crystalline surfaces are examples to which the 
KT theory of 2~-phase  transitions has been applied (Sinha 1980). In spite of the €act that 
the KT theory was initially developed for 2~-spin systems, its direct application to 
magnetic systems has been very rare and difficult to use in comparison. Magnetic layered 
systemslike Rb2Cr C140rBaM,(X04)2c~mp~und~ (M = CO, Ni andX = P, As) present 
a phenomenology understood as planar and 2D (Regnault et a1 1984). ‘Though these 
compounds have a ratio J ’ / J  = between inter- ( ( J ’ )  and intra- ( I ) )  layer 
exchange interaction constants, the KT transition is masked by the crossover to three 
dimensional ( 3 ~ )  behaviour. This crossover, so far studied for Ising and Heisenberg 
models with high temperature series expansion (HTS) (PuCrtolas et a1 1985) and with MC 
simulations (Kawabata and Bishop 1986), must dominate at a sufficiently low tem- 
perature and may forbid the KT phase transition. 

Better candidates to exhibit 2~-magnetic behaviour seem to be the graphite inter- 
calated compounds (GIC) with magnetic ions. In particular, the 2~ character of the 
GIC of Cl2Co or Cl,Fe, along with the fact that crystal field effects reduce the spin 
dimensionality to D = 2, suggests that KT transitions may be observed experimentally 
in these systems (Dresselhaus 1986). Moreover, for any fit of the experimental results 
to the theoretical predictions, one should realise that these intercalated compounds 
form clusters, mainly due to the synthesis procedure. Therefore, the possible lack of 
correlation between different clusters makes the study of planar magnetic models on 
finite-size systems, with arbitrary boundary conditions, sensible. 

For this purpose, MC simulations are most adequate, since not only are any kind of 
boundary conditions easily implemented, but the non-linear character of the vortex- 
antivortex excitation and spin-wave-vortex interaction is also dealt with straightforward. 
With this aim. MC simulations on both ZD-PR and X Y  models 

H,, = - J S ~  sin oi sin ej  cos(qi - qi) ( X Y  model) (1b) 
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have been performed. In the above expressions Of and q L  are the polar and azimuthal 
angles of the spin at site ‘i’, respectively, referred to an arbitrary direction, and the 
summation is restricted to nearest neighbours. The first Hamiltonian, HPR, is used to 
analyse a 2~ system of two-dimensional ( D  = 2) classical spins and this is considered 
with the second one, Hxu, a 2~ net of three dimensional ( D  = 3) classical spins, in which 
only the planar components interact. In both models the spin length is normalised to 
s2= 1. 

Boundary conditions have been chosen to be either free or periodic, as defined in 
the usual way. Moreover, a planar triangular (PT) lattice has been chosen to obtain 
non-universal parameters for the KT transition and to compare the results with the 
experimental ones on c12cO-GIC, which has been the subject of a previous com- 
munication (Falo and Navarro 1988). 

The present contribution, therefore, is mainly devoted to the analysis, through MC 
simulations, of clusters in planar 2~ models. First, a brief description of the MC algorithms 
used is given and, furthermore, to check these methods bulk behaviour comparisons 
with spin-wave theory and HTS results are presented. Secondly, calculations for both 
models and for different lattice sizes and boundary conditions are also performed. 
Finally, the main parameters of the transitions have been determined and the results 
have been analysed and discussed in the light of the KT theory. 

2. Monte Carlo algorithms 

Monte Carlo simulations have been performed using a conventional Metropolis algor- 
ithm and, to assure better statistics in the results and to save computing time, some 
modifications have been implemented. First, to obtain an acceptance ratio above 0.5, a 
maximum range of spin variation is allowed and sweeping the lattice sequentially, each 
Monte Carlo step (MCS) is obtained. A random number, r l ,  in the interval [ -0.5,0.5] is 
chosen and the angle q f  changed to (1 + w r J q ,  in the PK model, whereas, in the X Y  
case, S:  becomes (1 + o r , ) S :  (w < 1 is self-consistently chosen to get an acceptance 
ratio of 0.5). The energy of the new configuration is calculated and the change accepted 
if the difference from the previous one, A E ,  is lower than zero or if > r2 ( r 2  being 
another random number in the interval [0,1] and T ,  the reduced temperature of the 
system). In our case, the change has been tried three times on the same site. This method 
(Diep et a1 1985) speeds up the convergence to equilibrium and decreases the statistical 
correlations length between spin configurations. Note that with this method each MCS 
used here is equivalent to several usual MCS. 

To enable the system to reach thermal equilibrium, over 5 x lo3 MCS were discarded. 
Then, thermodynamic functions were obtained by averaging over some thousands 
(about lo4) MCS. For each lattice size several MC simulations, either lowering the tem- 
perature or increasing it, were performed. In the process, the initial configuration for 
each temperature was the last one derived in the previous simulation. Moreover, though 
different initial spin configurations were used, the same results were always obtained. 

The thermodynamic quantities obtained from the MC simulations are as follows. 
(i) The order parameter, defined as the absolute value of magnetisation mL, 

(for the PR model) 

mL = (7 sin ei cos vi, c sin ei sin vi IN (for the X Y  model) 
i i (3) 

L being the lattice linear dimension and N = L X L the number of spins. 
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(ii) The specific heat per spin and the reduced susceptibility, 

where E is the internal energy per spin and kB the Boltzmann constant. It is well known 
that (mL) = 0 for the infinite lattice ( L  +. m) and, therefore, it is convenient to define 

x.: = N(mZ) (6) 

xx = xexpT/C, C being the Curie constant. 

m,, is usually defined as 
(iii) The vorticity and the vortex density have also been considered. The vorticity, 

where the summation extends over each plaquette in the lattice (triangular in our case). 
The vortex density is defined as 

Statistical errors were estimated using ‘coarse graining’ averages and carrying out cor- 
relation time, zc, calculations. In all cases z, was found to be much smaller than the 
number of MCS used in the simulations, even near the critical point, where an important 
increase in z, is expected (critical slowing down). 

3. Check of MC simulations 

It is worthwhile to compare the MC results with those obtained by other techniques, to 
check simulation programs and procedures. Moreover, this comparison also enables the 
validity range of the approximations as well as the extent of finite-size effects to be 
estimated. In the low-temperature regime, where the validity of the spin-wave theory 
(SWT) is well proven, this comparison has already been used by Tobochnik and Chester 
(1979) to test their earlier MC simulations. For the PT lattice and PR model the mag- 
netisation and heat capacity; in the simplest SWT, are given by 

where A = TI6nJ 

c, = k ~ / 2 .  (10) 

Unfortunately, SWT is valid only for very low temperatures (T /J  < 0.3), but a simple 
approximation by Samuel (1982), which hereafter will be called self-consistent spin- 
wave theory (SCSWT), allows the validity of the SWT results to be extended to higher 
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Figure 1. Comparison of the absolute values of the 
magnetisation obtained for the PR (open symbols) 
and X Y  (full symbols) models by: MC simulations 

0 2  0 6  1 0  on a 16 X 16 spin lattice with PBC (circles); SWT 
(dashed curve) and SCSWT (continuous curve). T/J 

temperatures. If a Hartree-Fock approximation for the PR Hamiltonian (1) is used, an 
effective Hamiltonian, Heff, can be obtained, namely 

From (ll), ((qi - q j ) 2 ) / 2  = @ is derived as the solution of the self-consistent equation 

T T 1 - exp(ik * 6) 
@ = -e@(G(O) - G(S)) = - e@ 1 d k  

J BZ z - z Y k  

where S is avector that joins next-nearest neighbours, z the lattice coordination number, 
Y k  = (l/z)& eik" and the integration extends over the first Brillouin zone (BZ). 
G(0) - G(S) is a for the square lattice and Q for the PT one. Equation (12) enables an 
effective temperature, Teff = T e@, to be defined that, substituted in (9), gives a new 
dependence for the magnetisation. A similar procedure can be implemented for the X Y  
model and for this case two self-consistent equations are obtained 

a = (T/12J) ea/(l - e-"o Yo)( l  - 

Yo = (T/6J) eYo 1/(1 - e-@ a) 

(13a) 

(13b) 

where a = (@.7)/2, Di = ((n/2) - ei) and Yo = ((vi - qj)*)/2. 
In figure 1, comparisons of the magnetisation calculated using MC simulations for a 

16 X 16 spin lattice with PBC, as well as the results using SWT and SCSWT, are shown for 
the PR (open symbols) and X Y  (full symbols) models. The agreement with SCSWT 
predictions (continuous curve) is excellent up to O.ST, (Tc is critical temperature). For 
higher temperatures there are systematic deviations, probably due to the appearance of 
an increasing number of vortices, a fact that a perturbative theory is unable to take into 
account. 

In the high temperature limit, exact HTS expansions have shown to be a powerful 
tool in the study of phase-transitions phenomena, even up to the critical region (Domb 
and Green 1974). Eleven and 12 HTS coefficients for C, and x, respectively, are known 
for the PT lattice (Ferer and Velgakis 1983, Ferer et a1 1984), from which a direct 
computation of such quantities is possible. Moreover, to enlarge the convergency radius 
of the C, and x HTS, direct Pade approximants (PA) have been used to extrapolate the 
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Figure 2. Comparison of the specific heat per spin 
derived for the PR (open circles) and X Y  (full 
circles) models from: MC simulations on  a 30 X 30 
spin lattice with PBC (circles); direct evaluation of 
HTS (dashed curve) and PA extrapolations (full 
curve). 

T/J 

Figure 3. Comparison of the reduced suscepti- 
bility calculated for the PR (open symbols) andXY 
(full  symbols) models by meansof: Mcsimulations 
on  a 30 X 30 spin lattice with PBC (circles); direct 
evaluation of HTS (dashed curve) and PA extra- 
polations (continuous curve). 

results to a wider temperature range. In figures 2 and 3 the results obtained for the PR 
and X Y  models from direct HTS (dashed curves) and by means of PA (continuous curve) 
calculations are compared with the MC simulations for PBC on a 30 X 30 spin lattice, 
which is supposed to be large enough to mimic the bulk behaviour. The MC results for 
C, (circles of figure 2) fit fairly well the PA ones, almost up to the cusp. However, the 
series has a bad convergency and the cusp, when placed at a temperature, Tp, higher 
than T,, cannot be obtained from the HTS coefficients actually known. Moreover, there 
is a difference between direct HTS results and PA extrapolations, which proves the failing 
of the former. 

In the same temperature limit and for the case of x, results derived by the same 
procedures are plotted in figure 3. The x values computed from the HTS deviate from 
both PA and MC estimations at about 1.6Tc. Moreover, systematic differences appear 
between the PA and MC results for temperatures near T, (about 1.3TC), which are due to 
finite-size effects of the lattice used, because other MC simulations with different lattice 
sizes yield results that do not coincide at such temperatures, as will be seen in the next 
section. 

4. Results 

4.1. Planar rotator model 

Simulations on the 2~ PR model with PBC were performed for four different lattice sizes 
( L  x L ,  L = 12,24,30 and 48). The results for the energy and susceptibility are shown 
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Figure 6. Double-logarithmic representation of 
the x MC simulation results for the XY model with 
PBC (open symbols) and FBC (full symbols) for 
a 60 x 60 spin lattice. The lines have the same 
meaning as for figure 5 .  

Figure 4. Internal energy in dimensionless units, 
as a function of temperature, for the PR (A) and 
XY (B) models and for different spin-lattice sizes. 
Open symbols correspond to PBC and full ones to 
FBC. Triangles (12 X 12), squares (24 X 24), and 
circles (48 x 48). 

Figure 5. Double logarithmic representation of 
the x MC simulation results for the PR model with 
PBC (open symbols) and FBC (full symbols) for a 
60 x 60 spin lattice. The continuous curve cor- 
responds to the best fit to expression (14), with 
the critical parameters given in the text. 

x a ' o o o l  

'*\ 9 

' c  'p 

T/ J 
Figure7. Reducedsusceptibility derived by means 
of MC simulation for the X Y  model with PBC (open 
symbols) and FBC (full symbols) for different spin- 
lattice sizes. The dashed curves are guides to the 
eye. Symbols are the same as for figure 4. 

in figures 4 to 7 .  Avery small dependence of the energy data on the lattice size is observed 
(see figure 4). The heat-capacity curve shows a sharp cusp which rapidly saturates with 
increasing size. The cusp occurs at T,/J -- 1.75, which is higher than the corresponding 
one for the square lattice (Tobochnik and Chester 1979). 
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Although T, is not well defined in finite systems (Barber 1983), a rough estimation 
may be obtained if the critical behaviour of the reduced susceptibility for infinite KT 
systems is used, namely 

x = A exp(bt-'/2) with t = ( T  - T,) /T ,  (14) 
where b and T, are non-universal lattice and model-dependent parameters and will even 
also depend on boundary conditions. When the correlation length for a particular 
temperature is larger than the dimension L ,  the results of the simulation, which cannot 
become infinite, will deviate from those derived with expression (14). In spite of this 
fact, there is a wide temperature range in which an exponential variation is followed (see 
figure 5) and it is interesting to calculate these parameters from data obtained using 
finite lattice sizes. To avoid troubles due to finite size, in each simulation the largest 
possible lattice that will enable points near the transition to be less influenced by finite 
size has been used. For PBC, (open circles of figure 5) the best fit of the simulation to 
expression (14) yields Tc/J = 1.39 * 0.02 and b = 2.7. This T,value is in agreement with 
the one previously reported (Ferer and Velgakis 1983) determined using a four-fit 
analysis of x HTS. 

The same simulations with FBC on the PR model for L X L ( L  = 30,60) spin lattices 
show an appreciable dependence of the energy with the lattice size (figure 4, full 
symbols). The results almost overlap at higher temperatures with those for PBC and as 
temperature decrsases their differences increase. One of the reasons for such behaviour 
may be found in the contribution to the energyof the surface spins, since some neighbours 
are missing in the lattice edges. For larger sizes the energy values converge on the PBC 
results, though more slowly than expected if the decrease of the relative number of spins 
at the surface is considered. In the case of FBC no saturation was found for the C, cusp, 
although minor differences in both height and position are observed. 

For the largest spin lattice (60 X 60) the results for the x MC simulations have been 
plotted in figure 5 and fitted to expression (14). The critical parameters derived Tc/J = 
1.5 t 0.05 and b = 2.05, show small differences for T, from the value obtained using 
PBC, but the parameter b is unambiguously lower. 

4.2. X Y  model 

For the analysis of the X Y  model with PRC, MC simulations on L X L spin lattices ( L  = 
12, 24, 30, 48) have been used. The energy versus temperature results are shown in 
figure 4 (open symbols). Their behaviour is similar to that for the PR model and again a 
cusp in C, is observed, but at lower temperature, Tp/J = 1.30. This lower Tp is related 
to the smaller energy required for the creation of a vortex-antivortex pair, since in the 
XY model the classical spins may have a non-zero z-component. 

A similar analysis performed on a 48 x 48 spin lattice yields the x MC simulation 
results shown in figure 6 for PBC. The best fit to expression (14) was obtained forb = 3.8 
and T,/J = 1.03 t 0.02, which are values in agreement with HTS results (Ferer and 
Velgakis 1983). 

The same systematic simulations have been performed for the X Y  model with FBC 
and in figure 4 the internal energy as a function of the temperature is shown. Again, 
great changes due to the lattice-size effects are observed and furthermore this influence 
is also observed in C,, although the differences up to Tp  are minor. 

As for the PR model, there is an appreciable quantitative difference between the MC 
x simulation results for the same spin-lattice size depending on the boundary conditions, 
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which affects the critical parameters. The best fit to expression (14) yields T,/J= 
1.04 k 0.02 and b = 2.8 (see figure 6). While this T, coincides with the T, (PBC), the b 
value shows a large difference with respect to ~ ( P B c ) ,  which reflects the different 
magnitude of X. 

5. Discussion 

A first non-trivial conclusion of the above results, which may help the experimentalist 
dealing with cxc-type compounds, is the near insensitivity of C, to finite-size effects. For 
PBC there is no dependence of the internal energy per spin on the finite-size spin lattice, 
whereas for FBC, although the energy depends on the spin-lattice size, there are minor 
variations in the bulk quantity C,. Contrarily, Xisvery sensitive to both size and boundary 
conditions. 

On the other hand, the results show some expected and well known features, as 
follows. First, the Tp and T, values for the PT lattices reported here are different from 
those published (Tobochnik and Chester 1979) for the square one, and also the ratio 
Tp/Tc(p~) also differs from T,/T,(square). These differences were expected, since 
neither Tp nor T, are universal critical parameters. Savit (1980) has predicted a relation- 
ship between the critical temperatures for both lattices, T,(PT) = 31’2Tc(square), which 
is roughly fulfilled by the resultsobtained here. However, the relative difference between 
T, and Tp for the square lattice is about lo%, whereas for the PT one the relative 
difference amounts to 25-3092. 

The qualitative differences between relevant quantities obtained by MC simulations 
for the PR and X Y  models in the PT lattice are similar to those obtained for the square 
lattice, as expected. The possibility of tilting the spins up for the X Y  model decreases 
the spin projection on the xy-plane, which lowers the transition temperatures. Then, 
the energy needed to create a vortex-antivortex pair in X Y  model is expected to be 
lower than in the PR one. 

In figure 7 the temperature-dependence of xl. for the X Y  model with both PBC and 
FRC and different lattice sizes is shown. From inspection of this figure one concludes that 
the finite-size effects strongly depend on the boundary conditions, which is also observed 
in the PR model. It should be noted that b-values for FBC are always smaller than those 
for PBC. These results indicate that, depending on the boundary conditions, it seems that 
different mechanisms govern the phenomenology near T,. This may be studied by 
analysing the vortex-antivortex pair creation energy, E,, for both models. 

To this end expressions (7) and (8) for the vorticity and vortex density, respectively, 
have been calculated using MC simulations with both types of boundaries. If a temp- 
erature-dependence of the vortex density of the form 

p v m  = exp(-E,/k, T )  (15) 

is assumed, a mean value E, may be determined from a least-squares pv( T )  against T 
fit. This relationship has been found to be reasonably well fulfilled in a wide temperature 
range, both for FBC and for PBC, even well below T,. In table 1 the E, values obtained 
for the PR and X Y  models are summarised. For PBC, a 30 X 30 spin lattice, as being 
representative of the bulk behaviour, has been used, because for PBC an energy variation 
with the lattice size is not expected. The vorticity has a great influence on the specific 
heat (Ami and Kleinert 1982) and for PBC it saturates rapidly with increasing lattice size. 
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Table 1. Mean vortex-antivortex creation energy in normalised dimensionless units E,/zJ 
( z  = number of next neighbours) for the PR and X Y  models applied to the PT lattice, for 
different boundary conditions and different spin-lattice sizes. For compariscns the results 
for the square net (Gerling and Landau 1984. Landau and Binder 1981) are included. 

Model PBC (30 X 30) FBC (30 X 30) FBC (60 X 60) Square-lattice PBC 

PR 2.20 t 0.03 1.70 ? 0.03 1.82 ?c 0.03 2.45 
X Y  1.67 i 0.03 1.39 t 0.02 1.42 t 0.03 1.58 

Figure 8. Typical vortices (open symbols) and antivortices (full symbols) configurations for 
the PR model with FBC at different reduced temperatures: ( a )  T/J = 1.30; ( b )  T/J = 1.40; (c) 
T / J =  1.45;(d)T/J= 1.50;(TC/J= 1.40). 

For FBC the computation of p,( T )  has been performed on two lattice sizes L X L and 
2L x 2L ( L  = 30), which was enough to draw some conclusions. 

There is a shift in the mean value of the vortex pair-creation energy, which may 
be understood if typical equilibrium spin configurations at temperatures near T, are 
considered. In figure 8, for a 30 X 30 sp'in lattice and the PR model with FBC, rep- 
resentative equilibrium configurations of vortices for four temperatures around T, are 
shown. Free vortices as well as vortex-antivortex pairs tend to appear near the system 
boundaries. It should be noted that for FBC the restriction Zim, = 0 is not fillfilled and 
isolated vortices may appear. 

Holz and Gong (1987) have analysed the PR model in a square lattice defined for a 
semi-infinite plane (y 3 0). The vortices interaction Hamiltonian is given by 

(Yl - Y J 2  + (x, - X I >  2 ) " 2 ]  
(16) i (Yl + YJ2 + ( X I  - x,)* 

N N 

mf(ln(2yl/a) + in) - E m,m, In 
I +I 

where the sums extend over the Nvortices in the semi-plane and a is the lattice parameter. 
In this Hamiltonian the vortices interact with their vortex images, since FBC are equiv- 
alent to Von Neumann boundary conditions in the electrostatic analogy of the model 
(neutral Coulomb plasma). The single vortex energy is an increasing function of its 
distance to the boundary and therefore its creation near the edge is favoured. The same 
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happens with the vortex pairs, which are attracted to the boundary. The diffusion of a 
single vortex inside the bulk requires less energy than the dissociation of a vortex pair 
and due to this effect the transition is softened. The presence of single vortices on lattices 
with FBC decreases the correlations at the boundaries and, therefore, is responsible for 
the decrease of susceptibility at low temperatures with respect to the susceptibility for 
lattices with PBC. 

It may be stated, by simple inspection of figure 8, that binding vortex-antivortex 
pairs as well as unbinding (isolated) vortices are present mainly at the boundaries and 
even below T,. However, as the excellent fitting of pv to the Arrhenius law makes clear, 
only one activation energy seems to be relevant in both cases. For PBC this energy must 
be related to vortex-antivortex pair creation (Tobochnik and Chester 1979). For FBC 
the situation is less clear. There are two possible activation processes: one is related to 
pair creation and another associated with the isolated vortex which always appears at 
the boundaries. However, the energy of an isolated vortex should not be much different 
from that of the pair (see equation 16), because the former is created along with its 
‘vortex image’. Moreover, since the pairs interact also with their images, their creation 
energy must decrease, which explains the differences of E, between PBC and FBC. 

The main conclusion to be drawn concerns the fundamental role that boundary 
conditions play when one deals with finite-size systems. For the 2~-planar  models here 
described, not only quantitative but also qualitative differences are found. The boundary 
conditions modify the way in which the vortex pairs appear and break the SRO. Fur- 
thermore, single vortices are not forbidden at low temperatures, when FBC are chosen. 
Therefore, it is clear that any quantitative analysis of finite-size systems, such as clusters, 
cannot avoid the problem of the boundary conditions. 
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